Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 8(4)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805672

RESUMO

Epithelial cells express keratins, which are essential for the structural integrity and mechanical strength of the cells. In the junctional epithelium (JE) of the tooth, keratins such as K16, K18, and K19, are expressed, which is typical for non-differentiated and rapidly dividing cells. The expression of K17, K4, and K13 keratins can be induced by injury, bacterial irritation, smoking, and inflammation. In addition, these keratins can be found in the sulcular epithelium and in the JE. Our aim was to estimate the changes in K4, K13, K17, and K19 expression in gingival epithelial cells exposed to Aggregatibacter actinomycetemcomitans. An organotypic gingival mucosa and biofilm co-culture was used as a model system. The effect of the biofilm after 24 h was assessed using immunohistochemistry. The structure of the epithelium was also studied with transmission electron microscopy (TEM). The expression of K17 and K19, as well as total keratin expression, decreased in the suprabasal layers of epithelium, which were in close contact with the A. actinomycetemcomitans biofilm. The effect on keratin expression was biofilm specific. The expression of K4 and K13 was low in all of the tested conditions. When stimulated with the A. actinomycetemcomitans biofilm, the epithelial contact site displayed a thick necrotic layer on the top of the epithelium. The A. actinomycetemcomitans biofilm released vesicles, which were found in close contact with the epithelium. After A. actinomycetemcomitans irritation, gingival epithelial cells may lose their resistance and become more vulnerable to bacterial infection.

2.
Pathogens ; 8(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816971

RESUMO

Aggregatibacter actinomycetemcomitans genome can be divided into an accessory gene pool (found in some but not all strains) and a core gene pool (found in all strains). The functions of the accessory genes (genomic islands and non-island accessory genes) are largely unknown. We hypothesize that accessory genes confer critical functions for A. actinomycetemcomitans in vivo. This study examined the expression patterns of accessory and core genes of A. actinomycetemcomitans in distinct growth conditions. We found similar expression patterns of island and non-island accessory genes, which were generally lower than the core genes in all growth conditions. The median expression levels of genomic islands were 29%-37% of the core genes in enriched medium but elevated to as high as 63% of the core genes in nutrient-limited media. Several putative virulence genes, including the cytolethal distending toxin operon, were found to be activated in nutrient-limited conditions. In conclusion, genomic islands and non-island accessory genes exhibited distinct patterns of expression from the core genes and may play a role in the survival of A. actinomycetemcomitans in nutrient-limited environments.

3.
Virulence ; 9(1): 1205-1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30088437

RESUMO

Naturally competent bacteria acquire DNA from their surroundings to survive in nutrient-poor environments and incorporate DNA into their genomes as new genes for improved survival. The secretin HofQ from the oral pathogen Aggregatibacter actinomycetemcomitans has been associated with DNA uptake. Cytokine sequestering is a potential virulence mechanism in various bacteria and may modulate both host defense and bacterial physiology. The objective of this study was to elucidate a possible connection between natural competence and cytokine uptake in A. actinomycetemcomitans. The extramembranous domain of HofQ (emHofQ) was shown to interact with various cytokines, of which IL-8 exhibited the strongest interaction. The dissociation constant between emHofQ and IL-8 was 43 nM in static settings and 2.4 µM in dynamic settings. The moderate binding affinity is consistent with the hypothesis that emHofQ recognizes cytokines before transporting them into the cells. The interaction site was identified via crosslinking and mutational analysis. By structural comparison, relateda type I KH domain with a similar interaction site was detected in the Neisseria meningitidis secretin PilQ, which has been shown to participate in IL-8 uptake. Deletion of hofQ from the A. actinomycetemcomitans genome decreased the overall biofilm formation of this organism, abolished the response to cytokines, i.e., decreased eDNA levels in the presence of cytokines, and increased the susceptibility of the biofilm to tested ß-lactams. Moreover, we showed that recombinant IL-8 interacted with DNA. These results can be used in further studies on the specific role of cytokine uptake in bacterial virulence without interfering with natural-competence-related DNA uptake.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Proteínas de Bactérias/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-8/metabolismo , Secretina/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/patogenicidade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/imunologia , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Humanos , Interleucina-8/imunologia , Periodontite/imunologia , Periodontite/microbiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Secretina/imunologia , Virulência , beta-Lactamas/farmacologia
4.
Virulence ; 8(2): 115-134, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27459270

RESUMO

Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1ß. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1ß and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI- mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1ß in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1ß internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/crescimento & desenvolvimento , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Receptores de Interleucina-1/metabolismo , Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Gengiva/microbiologia , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/farmacologia , Interleucina-8/genética , Interleucina-8/farmacologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Matrix Biol ; 55: 77-89, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26923761

RESUMO

In inflammatory arthritis peptidyl arginine deiminase (PAD) enzymes can citrullinate arginine residues in extracellular matrix (ECM) proteins, such as collagens and fibronectin. This may lead to the generation of anti-citrullinated protein antibodies, important diagnostic markers in rheumatoid arthritis. In addition, the citrullination may directly affect protein function. Based on structural analysis, we found that most ECM-associated growth factors (GFs) have arginine residues in their receptor recognition sites. Thus, they are potential functional targets of extracellular citrullination. To examine this further, we focused on the citrullination of transforming growth factor-ßs (TGF-ß), well-known ECM-associated GFs. PAD-treatment of CHO-LTBP1 cell derived matrix, rich with TGF-ß, decreased the level of TGF-ß activity as detected by HaCaT and MLEC-PAI-1/Lu reporter cells. Additional experiments indicated that PAD-treatment inhibits the integrin-mediated TGF-ß activation since PAD-treatment decreased the binding of integrin αVß6 ectodomain as well as integrin-mediated spreading of MG-63 and HaCaT cells to ß1-latency associated peptide (TGF-ß1 LAP). The citrullination of the RGD site, an important integrin recognition motif, was confirmed by mass spectrometry. Furthermore, the citrullination of active TGF-ß1 inhibited its binding to recombinant TGF-ß receptor II, and prevented its ability to activate TGF-ß signaling. Thus, extracellular PAD activity can affect the function of ECM-associated growth factors by different mechanisms. Importantly, the citrullination of both latent and active TGF-ß has the potency to regulate the inflammatory process.


Assuntos
Citrulinação , Matriz Extracelular/enzimologia , Processamento de Proteína Pós-Traducional , Fator de Crescimento Transformador beta1/fisiologia , Motivos de Aminoácidos , Animais , Artrite Reumatoide/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...